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I. INTRODUCTION

In strategic communication systems the multiplicity of transmitters

and receivers produces a large ensemble of interference sources that

must be carefully examined both during the design and testing phases. To

complicate matters further, the link between the ith transmitter and the

jth receiver can exhibit nonlinear characteristics, thereby generating

intermodulation and cross-modulation effects. These intermodulation and

crossmodulation products can often increase to intolerable high levels, due to

accumulation of distortion along the link. Reduction, then, must be achieved

through compensation, or redesign of certain subsystems. Clearly, in

testing such communicatioa systems it is important to make certain that the

nonlinear distortion lies within acceptable limits. The Volterra series

expansion [1]-[3] permits description of a nonlinear system in a compact

form and, in turn, enables computation of the distortion in terms of the

multivariable transfer functions [4]-[6].

To date, however, reliable and rapid methods for finding the Volterra

transfer functions (or kernels) from laboratory tests have been lacking. The

work by Schetzen requires the use of wideband random excitation [7],

which is somewhat impractical in a laboratory environment, both because suit-

able wideband sources with guaranteed uniform spectral density in the region

of interest are difficult to find and, because their digital analysis

requires unduly high sampling rates. Further, the method requires sufficient

statistical averaging, involving guesswork on the part of the test engineer.

The method by Weiner and Ewen [ 8] uses deterministic input, but they assume

a rather restrictive model, namely with linear transfer function H (s) and

quadratic transfer function H2(SlS2)= Hl(s1)H1(s2)H1(s1+s2 ) , where 'E' is a

gain constant. In realistic systems, the modes and frequencies, as well

as the residues, of the quadratic subsystem may be different from those

suggested by this model. Further, the test input they use is an exponentially

decaying signal, not readily available from standard signal sources.

In this report we describe a method for determining the linear and

quadratic subsystems from square-pulse tests. The quadratic subsystem is



assumed to be symmetric, but of the form H2(S1 $S2 )-Ha(sl)Ha(S2 )Hc(Sl+s2)

so that it permits sufficient generality. The identification method involves

two transient test in the laboratory, followed by analysis by the computer.

The latter consists of (a) pole determination using the pencil-of-functions

method [9]-[12] and (b) computation of the residues by a least-squares

technique. Advantages of the method include the rapidity of the laboratory

tests, as contrasted with traditional frequency-scan approaches, and the

explicit determination of the transfer functions. Furthermore, the method

is readily extendible to H3 (sls 2,s3) and even to higher order transfer

functions, although the computations grow very rapidly for these cases.

The identification technique developed here represents a significant improve-

ment over existing identification techniques, and is potentially a way to

turn-key automatic test systems.

The structure of the report is as follows. In Section II we study the

z-domain representation of quadratic Volterra subsystem. Section III

discusses a general method for computation of the response of the linear

and the quadratic subsystems. In Section IV the bilinear and Volterra responses

of the quadratic subsystem to square pulses is computed in the form of

explicit formulas. The form of the responses shows they are representable

as the step, or impulse responses of certain equivalent linear systems.

As a consequence, the pencil-of-functions method by Jain[10]-[121 can

be used to determine the poles of the quadratic subsystem. The complete

identification procedure for a two-variable system is discussed in Section

V. Computer generated examples, also presented in Section V, demonstrate

the success of the approach developed in this report.
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II. z-DOMAIN CHARACTERIZATION OF THE QUADRATIC VOLTERRA SYSTEM

In this section we shall be interested in the z-domain characterization

of the quadratic nonlinear system shown in Fig. 1. This system is the most

basic quadratic Volterra system, henceforth referred to as the single multi-

plier (lM) configuration. It will be shown that this system can be repre-

sented mathematically by the second degree term in the Volterra series [14],

[71 with the corresponding quadratic transfer function H2 (si, s2) - H(s 1 )

Hb (S2 )Hc(S 1+ s2). For the case where Ha, Hb and Hc are rational, we will

find the z-domain description of this system for impulse and step invariant

criteria. Throughout we will assume these components are causal and linear.

-- I Ya(t)+

y2 (t)( t ) 
x H c ( s )

H- (s) _" b _t

Fig. 1. Basic quadratic Volterra system

2.1 Continuous-Time Analysis

From Fig. I we observe the output of the multiplier to be

X(t) c h ha( x(t-&)d 1  hb(n)x(t-n) dN (1)

From this the response of block Hc , i.e., the system output, is found to be

y2 (t) = hc(T) xc(t-T) dT

f h(T) fha(i) X(t-T-E) d f'hb(n) X(t-T-TI) dri dT (2)

-00 -00 -00

3



Letting T I = T + E, and T 2  T + i, we have

Y2 (t) 0 fh c (T) ha (T 1 -T) hb(t 2 -T) x(t-Tl) x(t-T 2) dTl dT 2 dT

oI 2 2 < x dt dt (3)

f 0fh 2 (T1 ,t 2 ) X(t-T 1 ) X(t-r 2 ) T1d2(3

where

h 2 (T 1 ,T 2) = f hc(T) h a(Tf-T) hbI(r 2 -,) dr (4)

-00o

The two-dimensional Laplace-transform of h2 is
i2

r0 -st+ s2)
H 2 (slS 2 ) 2(' )h c(T) h hb(btr2-T) e dT 1I dT 2 dT

00 -0

f %(2 - r) s2(@2 - r

f' h.1 ,(- t) e dT 2 dT

=H a (sl)Hb(s 2)Hc (s1+ s2

We will omit the qualifier "two-dimensional" when it is clear from the context.

However, the significance of this qualifier becomes particularly evident when

we associate with y2 (t) in (3) the following two-dimensional response

0r
y2 (tlt 2) = 2 h2 (TT 2 ) x(t1- T1 ) x(t 2 - T2 ) dT1 dT2  (6)

Straightforward application of the definition of two-dimensional Laplace

transform and some manipulation, yields

4



Y2 (si, s 2) = H2 (sl, s 2 ) X(sI) X(s 2 ) (7a)

= H2 (si, s 2 ) X(s, s2) (7b)

which represents the input-output relationship of a two-dimensional linear

system as shown in Fig. 2. We will call Y2 (tl, t 2 ) the associated two-

dimensional response since Y2 (t) - 2 (tl, t2 )I

x(t,t 2) H2 (sis 2) 3 (tlt

Fig. 2. Associated two-dimensional linear system

Rational Case

When
n A.

H a = I  s+a.

n B.
b j-1 s+b.

n Cc
H E 7.
c Z-i s+ck

or, equivalently,

n -a. t

h (t) E l A. e
a i=l 1

n -b t
h(t) E . B. e t > 0 (8b)

bjl 

n -ct
h c(t) = l C9 e

Z-1

. . . . . . . .. .. .. . . _ _ , I I I. I5

= ,, ,... ' ."• .,&." .



then equations (3), (6) and (7) may be written as

n

y2 A(t) E A gB 1Z(I,T 2) x(t- T) x(t- T dT dT 2  (9a)
2 2 ii ,2il 2 1

n

Y2 (sis 2 ) - Z AiBjC G (si  X(s I  (9c)

where

1
Gij£(Sl, s2) = (s~i (s +bj) (+ +c) (l~a)

9 .z(TST 2 ) =4 GijZ(sis 2) (lOb)

It follows from (9)-(10) that the response is a weighted triple sum over

the response of the elementary quadratic system shown in Fig. 3 where a = ai,

Thus, we arrive at the important conclusion that it is only necessary to analyze

the elementary system of Fig. 3 in detail; the properties of the original system,

e.g., its resnonse, would follow immediately through the appropriate WTS process.

1 Ya

sx x 1

s + c Y

1I 1
s+b Yb

Fig. 3. Elementary quadratic system

Impulse response of the elementary quadratic system

Using h O(t) e-= t u(t), a = a,b,c in equation (4) we obtain the quadratic

6
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Volterra kernel for the elementary system of Fig. 3 as

o - -a(r -T) -b(T 2 - T)

g(TI,T 2 ) = e-u(T) e u(T I - T) e u(T2 - T) dT

-00

f e- (c-a-b)T dT U(T*) -aTl -bT2

0

-aTl -bT2 1 e - (c-a-b)T*
= e e c-a-b u(T 1 ) u(T 2 ) (1)

whereI t* = Min(Tl, T2 ), it is assumed that c 0 a + b.

The impulse response of the elementary quadratic system is obtained by

setting T I = T 2 = t in (11):

- (a+b)t - ctY2 (t) = c-a-b u(t) (12)

Example I

For a = 1, b = 3 and c = 6 we have

T - 3T 22T*
g('TT) 2 l-e I ) u 1  u(T 2 )

This is depicted in Fig. 4 where the hatched region denotes the region of

zero value for g(TI,T 2 ).

Note also that the two-dimensional response to the input

X(tlpt 2 ) = 6(tl- ) 6(t 2 - )

is

-a(tI-a) -b(t 2 - e - e(c - a - b)t*

= e c- a-b

u(t I - c) u(t 2 -

The upper limit T* implies that integration is done from 0 to T1 or T2, which-

ever is smnller.

7
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where t* -min {t 1- 0., t 2 -}.This follows from (11) and the"stationarit'

of the associated two dimensional system.

Bilinear Operator [71

Equation ( 3) may be rewritten as

y2 (t) = V2[x(t)]

00

h Jf V' h(1 t) X(t-T1  X(t-~T2  dT1 dT2

-00

That is y2 (t) may be viewed as the result of a nonlinear operator upon the

input signal x(t). This operator may be generalized as

Vfx(t) x (01I)-1' x(- t- dr cdT (13)
2 1 -2 hf 2 r, 2) x1(- 1) x2(tt 2  1 2

00

Clearly, V 2 {.,.} is bilinear itx and x2;we will call it the bilinear

Volterra operator, or simply the bilinear operator. Note that

V 2 (x I= V 2 {x, X}

The significance of the bilinear operator arises from the fact that

n n n
V a ix] - a i~ V2{xi- x (14)

Example 2(a)

We will find the bilinear response of the elementary system of Fig. 3

for the case

1 Ct 6t-a), x (t) =6t8

where we will assume ac < ~

9



From equation (15) we find the bilinear response to be the convolution

of h2 (tl,t 2) and 6(t1-a, t2- ), with t1 and t2 set equal to t. This is

equivalent to the integral of the product of h2 (TIT 2 ) and a two-dimensional

impulse located at T = t - a and T2 = t - . This is depicted in Fig. 5a for

four different values of t, namely t = 0, a, a and t > . Now, for the

particular case of the 1 - M system of Fig. 3, we have (denoting i/(c-a-b) as 4)

{0l -aT1 -bT2 1-e

V2{X x2} = e e c - a - b

00

u(T 2 ) 6(t- -T 2  dT 2 u(-[I1) 6(t-a-T I1 ) dT 1

°e-aTl )f
T1 -bT -(c-a)T2

= fe 6(t--tl) [e -e 5(t- -T2)dT 2 dTI

0 0

-aT1 -ca tB

fje 6(t-a-T)[e
b ( t - )  e )t ] U(Tl-t+ )dT 1

O1
0

(c-) t-B I-aT1
- [e b(t - ) e (c a)(t ] ) f e 6(t-a-T)dT I U(t- )

Se- a(t-(X)[e-b(t- ) _-e- ( c - a ) ( t - 6 ) ] Iu(t-a) u(t- )

e - a ( t - CO) [ e - b ( t - )  e- ]ca(6 u(t- )

=c- a-b e[ e]ut~

For clarification of limits of integrations leading to steps two and three

see Fig.5b. A similar formula can be derived for the case a > B.

10



s lope=l

Pt>B

T0 I

/
/

/
-0a /

_ _ /

/ 't=

Fig. 5.Location of two-dimensional impulse

in the T T2 plane.

I

t 2

/T

ta t

0

Fig. 5b. Limits of integration in Example 2

inth T -T 2 p11 e



Note that the transform of V 2{X IX2 } is

V2 {X1 (s), X2 (s)} = H2 (sis 2 )X1 (s 1 )X2 (s 2 ) (15)

and, clearly, (15) can also be written in the transform domain:

n n n
V2[ E ai Xi(s)] = a E aiaj  V2 {Xi(s), X (s)} (16)

i=l i=l j=l

To demonstrate the usefulness of the transform domain we consider Example

2(a) again.

Example 2(b)

Since
- sI  - s 2Xl(S I ) = e , X2 (s 2 ) = e

then

V fx -U 1 e - s
V2 {1' 2 (s +a)(s 2+b)(s l+S 2+C)

Application of George's theorem (Corollary-Appendix A) gives immediately the same

time domain bilinear response as before.

Finally, before leaving the discussion on bilinear response, we note that

the bilinear response of the general 1-M section with H, H b, and H characterizedc

by (8), is

n
V2{XIX = AiBjC Z Gijk(SlS 2 Xl(sl)X2(s2) (17)

i,j ,1 =l

The time-domain response is of course the inverse transform of (17).

Bilinear Response From Block Diagram -

We will show that the bilinear response of the 1-M (Fig. 1) section can

be obtained by applying x1 (t) to Ha(s) and x2 (t) to Hb(s) as shown in Fig. 6(b).

Of course, this procedure is useful only for pencil-and-paper purposes and

simulation; it is not useful for practical situations where it is generally

not possible to isolate Ha(s) and H(s).

12



(a)t Bl c - Hg a for bi a r res ons

a (t

X2x (t)

Fig. 6.ockileafr responea fresomnlckdage

Substituting for h 2(TT 2 ) from (4) and interchanging the order of

integration, we have

v 2fx1,x 2} h h (T) F h a(T1-T)X 1 (t-T 1 ) d-T1 Fh hb (T 2 T)x 2(t-T 2)dT 2 d

'r _0-00-

or, with T Ti - T and 2 = T 2 --,

v2 1'p 21 = Jch C() h (El )x 1 (t-T- 1 )d& 1  f' (2) tT&2) 2d

= fh c(T ) Ya(t-T) yb(t-T) dt

= h c T) XC(t-T) dT

where ya(t) is the response of H a(s) to the input x 1(t), yb (t) the response

of H,0(s) to the input x (t), and x (t) = Y (t)y (t). Therefore, the inter-
2 C a b

pretation of (15) in the form of Fig. 6(a), and Fig'.,6(b), is justified.
13



2.2 Impulse-Invariant z-Transform for 1-M Section

The concept of impulse invariance of a two-dimensional linear system can

be enunciated as follows. Given that a continuous input signal x(tl, t2 ) is

applied to the sampled-data system of Fig. 7 a; then the system of Fig. 7b is

said to be impulse-invariant if its response y(kl, k2 ) to the sequence

x(k I , k2 ) = X(k 1 A, k2 A) equals the sampled response y(k 1 A, k2 A) of Fig. 7a.

x*(tl,t
2 )

X(tl't 2) \ I A k2 A) x(k1 k 2) H2 z - y(kl'k 2

Ideal 2(Sl'S2) Sampler

Sampler
x*(tl~t 2 ) =EZ (klIA,k 2A)6(t l-kl~t 2-kA 2 )

(a) (b)

Fig. 7. Impulse invariant discrete-time system

Note that the above concept of impulse-invariance is a direct extension

of this concept for the one-dimensional case [13].

We will use the known result that the impulse invariant equivalent

z-domain function is given by the formula [14]

1 2 j F(Vl'v2) dvl dv2
F(z 'Z2) s. ,z2  ) (18)

2 e i -jO (l-e )(l-e )

zi e

Specifically, for the function G(sl,s2 ) i/(sl+ a)(s 2+ b)(s 1 + s2 c),

the quadratic transfer function of Fig. 3, we have

14



G(z1 , z) )2 jo dv Idv 2

zi~ i (v 1+a)(v 2+b)(v 1+v 2+c)(1-e 11))(-e~

I . dv 1 1Jo 2 +)1e(2-v2A1--(s 1+a)A -e-( V2+

-S 1 (v2+b)(1-e ) ((V-a 12 1 - I
lef dv

-(s 1+a) iiT j -(a 2-v2)A -s++cA 2

-( 1 s+a)A 1. -(V 2 +c-a)A dv2

-(s 1+a)A 7rj -(a I+v 2 +c)A -(s 2-V2 )A

- e 1 00 12f
(B +a)A Q(s 2 + j

1-e

e( 1 +awmc
- -u1 a) -( 1+ 2+)A E P(s2+ s- (19)

where s2)1e(a2+aA

Q~s 2 1-e-( 1 +8 2 +CF (a 2+b)(s 2 +c-a)(-e(s
1+s 2 )(0

Then, z 1e -A(1-e (c-a)A -z (ebA _e- (c-a)A z -
G(z1 ,z) 2 aA- 22 (c--b)(-e-aAz -1)(1- - 1-1 -1 ) (- ca z2- 1 )(--bA 2-1

z1I Z2  (pq -r)

(c-b-a)(1-p z I l- )(1-r21

with p - , q -e- .and r-c

15



Note in the above we evaluate line integrals by contour integration, closing

for convenience, in the left half plane in the first integral and in the right

half plane in the second. Also note Re[s 1] > 0, Re[s 2 ] > 0 since h 2 (TI,T 2) is

causal.

Example 3

For a = 1.025866, b = 3.250379, c - 5.753641 and A = 0.05 s, we have

-1 -1
1 00575z 1 z-

(sl+a)(s 2+b)(s 1+s 2+c) 1.4 77 397 (1-0.95zi-i )(1-0.85z 2-I)(1-0.75zi- 1 z2-1

Because of its importance we give the conversion pair, derived above,

explicitly:

-l -l

1 z1  z 2  (pq-r)
(s 1 +a)(s 2 +b)(s 1 +s 2+c) (c-a-b)(l-PZ1-1)(l-q z2-1)(l-rZl-1 z2-1(

(note p, q and r are the z-plane maps of the poles -a, -b and -c; e.g.,

p~aA.} ~p "= e-a.

An alternative derivation (in the time domain) of the above conversion

pair can also be given. A block diagram description of the input-output

relationship (of the elementary quadratic system of Fig. 3) in the z-domain

is given in Fig. 8.

-1 Ya(k)

1-pz- 1 x, k) 2

x(k) r 1 y (k)

-1

lzz -

1- qZ Yb(k)

c (e- (a+b)A _e-CA)/(cAa-b)

Fig. 8. Impulse-invariant z-domain characterization of
the elementary quadratic system

16



Example 4

Let us calculate the response of the system of Example 2 for four sample

points with k - 0, 1, 2, 3 and the input 1, 1, 0, 0, ... We find

Ya(k): 0 1 1.95 1.8525

Yb(k): 0 1 1.85 1.5725

so that their product gives the following input to the output block

xc (k): 0 1 3.6075 2.91306

Then y(k), as obtained from the difference equation y(k) - 0.75y(k-l) +

2
Q xc (k), a - 0.03892, is

y(k): 0 0.00151 0.00660 0.00936

STEP-INVARIANT z-TRANSFORM FOR 1-M SECTION

The concept of step invariance of a two-dimensional linear system can be

enunciated as follows. Given that a continuous input signal x(tl, t2 ) is

applied to the sampled-data system of Fig. 9a; then the system of Fig. 9b is

said to be step-invariant if its response y(k1 , k2) to the sequence x(k1 , k2 ) =

x(kIA,k 2 A) equals the sampled response y(k1 A,k2 ) of Fig. 9a.

x(tt 2 ) Zero-order Y(kAk 2 A)

Hold H(l9s2

x (t 1  t 2) x(k 1 A, k2A) p(t 1 - k 1 A) p(t2 - k2 A)
k k =op 1' 2

p(t) = 1 for 0 < t < A, 0 otherwise

s (a) sampled-data system

17



y(kilk )
X(kl'k 2 ) 2H2 (ZlZ2)

(b) Digital system

Fig. 9. Step-invariant digital system

The above concept immediately results in the following definition.

Definition. Given a continuous two-dimensional system Ha' a digital two-

dimensional system Hd is said to be step invariant if the response of Hd to

u(k1 ) u(k2) equals the response of H a to u(t1 ) u(t2 ) at the sampled points.

Note that the above concept of step-invariance is a direct extension

of this concept for the one dimensional case [13].

We begin the derivation by observing that the transfer function of the

zero order hold is

(1 - e-)(l - e - s A (24)

Hhold(Sl, s2) S2

and the transfer function of the system between the ideal samplers (in Fig.

9a) is
-SlA -s2A

"1(1- es1A )(1I- es 2)
h 2 (s s 2 ) = H 2(S, s 2 )

1 2

-slA -s2A -( I +2)

= (l - e - e 2 + e-(l + s2 )H (sSl1S 2  2(sI' s2 )

SlS H2(Sl, s2 + (25.1)

18



-S A

+ e H(s, s) (25.2)
1s2 2

+ e H2(sit 2  (25.3)
s 1 s2 2 1 , 2)(53

-(s 1+ s2 )A

+ e S lS2 H 2 (sl, s2)  (25.4)

Further, we make the important observation that the step-invariance of

H2 (Sl, s 2) to some H2 (zl, z2 ) is equivalent to the impulse invariance of

12'(si s2) to the ame zl, z2). This is obvious from the enunciation of the

basic concepts of impulse and step invariance.

We will now restrict our attention to the 1M section so that

H (sip sABC (26)H2(s1' 2 (s1+ a)(s 2+ b)(s 1 + s2+ c)

Observe that each of the four terms on the right hand side of (25) is of the form

-(PSI + Vs 2 )
e ABC

H (sip s
s1s12 (s+ a)(s 2+ b)(s 1+ s2+ c)

p, v = 0 or A

i = 1, 2, 3, 4 (27)

Partial fraction expansion yields

ABC - S1+ vs 2) 1 1 1 1 1
2,i(Sl,2 ) = ab e s I  s+a s2 - s 2+b (s 1+ s 2 + c)

ABC -(1si+ Vs 2 ) 1 1 1 + 1
ab e 1SlS2 Sl(s2 + b) s2 (s1+ a) 

+ (Sl+ a)(s 2+ b)

Sl+s 2+ c (28)

19
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In turn, each of the four terms on the right hand side of (29) is of the form

-(usl+ Vs 2

G(Sls 2 ) = K e 1
(sI+ C) (s 2+ )(SI+ s2+)(2

for which the impulse-invariant z-transform (from (23)) is

-1 -

G(zlZ 2) = K z - z - V  Z1  z2- 1(--1) (30)19 2 1 2~(.Y-L- a) (l-TTzl-) (l- z2-1) (l-Pz I1 z 2 -

Using the property of linearity, the step-invariant z-transform of

H 2(ss 2) consists of sixteen terms obtained by using the partial

fraction expansion of (28) in (25) and finally using the correspondence

of (29)-(30) upon each term. The result is

-1 -l
H($ AC zI  z 2  + p- zI 1

ab 1 -l - c - aZ

+q-r 
1

c-b -1 -qz

p- (l-z 1-)
1 (l-z 2 

1)
+c-a-b (_z-l)(~ z-1)J

-aA -bA -cA
where p = e , q = e , r = e

This is represented in block-diagram form in Fig.10.
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III. DFT BASED COMPUTATION OF QUADRATIC VOLTERRA RESPONSE

A general method for computation of the response of a second order

Volterra system (see Fig. 11) is highly useful in the investigation of

Volterra system identification. The features desired in such a method are

the following:

a. The characterization of the blocks in Fig. 11 should be permitted

in

s domain

z domain

f domain (i.e., in terms of the frequency ch. H(f(k)))

t domain (i.e., in terms of the impulse response h(t(k)))

b. The specification of the input should be permissible in the time

domain. This is useful in transient type of tests, such as with

pulse inputs.

C. The specification of the input should be permissible in the frequency

domain. This is useful in steady-state sinusoidal tests.

H a(s) Y a W)

xc

x(t) x He(S )

Ybt

Fig. 11. Quadratic Volterra system
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Such a method can be best developed by use of the discrete Fourier

transform (DFT). We shall in faLt use the fast, algorithmic version commonly

known as the fast Fourier transform (FFT). And, we will use the terms DFT

and FFT interchangably. To develop the method we begin first with the case

of the linear system.

3.1 Linear System Response via DFT

Consider a linear system described by a z-domain transfer function H(z).

Note that if an s-domain transfer function is given instead, then its z-domain

pulse-equivalent function can be obtained by use of the FORTRAN program STOZII.

An example is the following

(10 4)s 0.02z - - 0.0196117z
- 2

+ 4(10 3 )s + 108 1 - 1.884802z - + 0.923116z2

where a sampling of A = 0.02 ms. has been used.

The choice of the sampling interval and the number of points to be used

in simulation generally requires some experimentation. However, certain

guidelines may be given based upon signal theoretic considerations. These

will be discussed later, and we assume that the sampling interval A, an input

(of essential length b second, or B samples) x(t), and the number of points

N to be used for DFT processing have been selected.

Notation -

= Sampling interval

N = Number of samples used in DFT

N

L=-+ 12

T = NA

6 = - i.e., spacing of DFT frequencies,

or frequency resolution in DFT
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H(s) = s-domain transfer function

H(z) = z-domain transfer function

H(f m ) = Frequency characteristic of the network,

where f = mm

H(tk) = Impulse response of the network, where tk kA

fmax = L6 = (-N + 1)6, i.e., the highest unambiguous frequency

Whatever the specification of the linear system, we convert it to the

H(f ) form as shown in the flowchart of Fig. 12.
m

H(s) H(z) H(t k  H(f M)

STOZ

Conversion

Calculate

Impulse

Response

SSymmetrize

DFT [H(f N - )--H*(f m

H(fm )

Fig. 12. Conversion of system specification to conjugate

symmetric H(fm) form
m

24



Also, the input is converted to the frequency form as shown in Fig. 13.

Time pulse x(tk ) X(f )
k m

DFT Symmetrize
X(f N-m )  X*(f M)

X(f)

Fig. 13. Conversion of input to conjugate symmetric

X(f ) form.
m

For purposes of quick reference we give below the pair of discrete Fourier

transform formulas:

N-1 -j 2rmk
X(fm ) = E x(tk) e (32a)

k=O

1 N-1 2T mk
X(tk) = E X(fm) e (32b)

m=O

These relationships will also be written for convenience as

x(tk X(f m
DFT-

25
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Then the network response can be obtained as

Y(fm ) = H(f m ) X(f m ) (33a)

-i

y(tk ) = DFT Y(f m) (33b)

We remark for completeness that y(tk), the result of (33b) is equivalent to

the following circular convolution [31

N-1
y(tk) = Z x(tj) h((t k - t )) (34)

j=0

where ((tk - t.)) denotes the difference of tk and t on a circular (or

periodic) basis on a circle of circumference T = NA. Formula (34) brings into

focus two important facts. Formula (34), or equivalently (33b), can approxi-

mate the familiar aperiodic convolution integral

y(t) = x(T) h(t-T) dT (35)

if

a. it is multiplied by A, and

b. A + B - 1 < N, or a + b < T (36)

where

a = duration of impulse response in seconds

A = duration of impulse response in samples

b = duration of input pulse in seconds

B = duration of input pulse in samples

26



Example 5

The simple first order system considered is

1 0.09754z
- 1

s + 0.5 1 - 0.95123z 1

which has a cutoff frequency at approximately 0.08 Hz. Since the roll-off

rate is -20dB/decade, it is reasonable to take the highest frequency of in-

terest as f = 5 Hz. Thus we take the sampling interval to be A = 0.1s.max

Now since the time constant of the network is 2 sec, we should estimate the

impulse response to be about 8s. Allowing for an input duration of is, we

could take T to be 10s. However, for reasons of frequency resolution (dis-

cussed later) we use

N = 256

T = NA = 25.6s

Two test inputs are examined below.

(a) Square pulse input - width b = 1 sec (B = 10 samples)

The true response is easily found to be

y(t) = 211 - e - 0 . 5 t I u(t) - 2 [1 - e- 0.5(t -l)] u(t - 1)

where u(t) denotes the unit step function. The samples y(tk ) computed by the

DFT method (via program VOL 2 - Section IV) are compared with the true value

in Table 1; a graphical comparison is given in Fig. 14.

Table 1

tk 0 0.1 0.2 0.5 1.0 2.0 5.0

True y(tk ) 0.0 0.0975 0.190 0.442 0.787 0.477 0.107

DFT based y(tk) 0.0 0.0975 0.190 0.442 0.787 0.477 0.106

27
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AMPLITUDE0 4 - I I 1 1 1 1 1

08 000

0 600

0 )20

0 240

0 IQ 0 20 -l0 0 "0 C Do a 60 0 o 0 6 9 go 0 lo
TIME

Fig. 14. Comparison of true and DFT-based responses
(Example 5 - Square pulse input)

Exponential Inpu~t - x(t) = e- .5

Because of the long duration of the input the number of points was in-

creased to N = 512.

The true response is readily checked to be

y(t) = 4(e- 2 5 - e- 5t u(t)

The samples y(t k ) computed by the DFT method (via program VOL2) are compared

with the true values in Table 2; a graphical comparison is given in Fig. 15.

2Table 2

St k  0.0 0.0 0.2 0.5 1.0 2.0 5.0 0

Tue Y(t(k) 0.0 0.0963 0.186 0.415 0.689 0.955 0.818 0.30

DFT based y(t k 0.0 0.0975 0.188 0.420 0.698 0.967 0.828 0.30
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a 300

0,900

0. 100

0. 77l

o 5oo

* 400

o [ 100 F -- F

0 IT I
ie C 6C 0 ic 7. 111 CC~ 219 "1 1 C No0

STME

Fig. 15. Comparison of true and DFT-based responses

(Example 5 - Exponential input)

It is seen above that the DFT method is able to compute the network

response quite accurately. For further accuracy, the sampling interval must

be decreased or the number of points must be increased or both. We should

also remark that if the input were e , a sampling intervalof 0.05s. would

be used rather than 0.1s.

Example 6

The oscillatory system considered is

(10 4)s 0.02z- 1 - 0.0196117z
- 2

s2 4(03)s + 108 1 - 1.884802z
- I + 0.923116z - 2

which has a natural frequency at approximately 1.6 KHz. Since the roll-off

rate is -40dB/decade it is reasonable to take the highest frequency of interest

as f = 25 KHz. Thus we take the sampling interval to be A = 0.02 ms.
max
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Further, since the time constant is 0.5 ms, we should estimate the duration of

the impulse response to be about 2 ms. Allowing for an input signal duration

of 0.5 ms, we could take T to be 2.5 ms. However, for reasons of frequency

resolution (discussed later) we use

N = 512

T = NA = 10.24 ms

The test input is taken to be a square pulse of width b = 0.6 ms. (B =

30 samples). Correspondingly,the true response is

y(t) = e 2 (1 0 )t sin(l04 t) u(t) - e-2 (103 )(t-b) sin(10 4 (t-b)) u(t-b).

The samples y(tk) computed by the DFT method (via program VOL2) are compared

with the tru values in Table 3; a graphical comparison is given in Fig. 16.

Table 3

tk ms 0 0.02 0.04 0.1 0.2 0.5 1.0

True Y(tk) 0.0 0.191 0.359 0.689 0.610 -0.353 0.266

DFT based y(t k) 0.0 0.191 0.360 0.694 0.633 -0.369 0.271

-iMP r " i- JI

0 250

0 125

25

0 500-0 25

21 9 40 0 cL 80 lot8. 041 01 T4. Lfl 21l.

TIME

Fig. 16. Comparison of true and DFT-based responses

(Example 6)
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Again, as in Example 1, a close correspondence between the true and DFT

based respons~es is evidenced.

Example 7

Here we consider the case where the network specification is given in

terms of its impulse response

h(t) = 1 for 0 < t < 10 ms.

0 otherwise

The input is specified as a square pulse of duration 20 ms, i.e.,

x(t) = 1 for 0 < t < 20 ms

0 otherwise

We will use A= 1 ms and N = 128. The response computed from the DFT based

program is compared with the true response in Fig. 17. As expected, good

agreement has been realized.

AMPLITUDE

1 ,0 L I I L I I I

.I00 -i

O 700

0 tootl

0.400

0. lot

-o , QI I I I I I I I

0 q 35.a 40.a 50.o bSm ~ 0 1 0 IT 3.6 369.0 l
TIME

Fig. 17. Comparison of true and DFT-based responses

(Example 7)
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Example 8

In this final example the network specification is given in terms of the

frequency response

H(f) = 1 for jft < 5 KHz

and a square pulse input

x(t) = 1 for 0 < t < 0.2 ms

Since the input is a square pulse of width 0.2 ms the highest frequency

of interest f is estimated at 10 f = 50 KHz. Thus the sampling frequencymax zero

must be 100 KHz requiring A =10s. Then we have

Input duration = 0.2 ms (20 samples)

Impulse response

duration 20 t = 2 ms

200 samples

We therefore take N = 512. The true response is known to be

y(t) = 1 {Si[i0T(103)t] _ Si[10T(103)(t - 0.2(10-3))]}

where

Si[V] = Sin(v) dvf V

0

The samples y(tk) computed by the DFT method are compared with the true value

in Table 3. A graphical sketch of the computed values is given in Fig. 18.

(Note that the true response is not shown in Fig. 18).
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Fig. 18. DFT-based respone - Example 9
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IV. BILINEAR AND VOLTERRA RESPONSES OF

1-M SECTION TO SQUARE PULSE INPUTS

Our interest in the response of nonlinear Volterra systems to square-

pulses arises becauseof the many advantages this type of input offers in

the laboratory. These are: (a) it is easily generated in the laboratory,

(b) its spectral width (fb) is readily specifiable through the pulse width

(b = 1/fb) , and (c) the formulas for the system response are tractable.

Also, as we shall see in the next section, it is possible to perform para-

meter identification via pencil-of-function method for such input-output

pairs.

In addition to the Volterra response of the I-M section (see Fig. 19),

we will also be interested in its bilinear response, because the bilinear

response V 2{xx 2} can be determined in the laboratory by performing tests

,pon the system with the inputs x + x 2 and x1 - x2 and then using the

formula 2

V2 {XlX 2} = - [V2 [xl + x 2] - V2 [x- x2 ]] (37a)

Alternatively, one can test the system with the inputs xl, x2 and x + x2.

Then the bilinear response is given by

V2  XlX 2 } = - [VmEx I + x2] - Vm[X I] - V2 [x2 ] (37b)

n A.

Ha = i~(S+a i

t n Y2 (t)i n B
b = jl(S+bj)

Fig. 19 General I-M Section

2 Formulas (37a) and (37b) assume that the Kernel H2(sits2) is symmetric.
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Of course, the re4l reason for the interest in the bilinear response is

its bilinearity property. For example, the bilinear response to two square

pulses p1 (t) - A(u(t)-u(t-Tl)) = A(uo-ul) and P2 (t) B(u(t-Tl)-u(t-T))=B(ul-u2 )

is given as
V2 {PlP2} =AB[V2{UoI - V 2{UlU V2 {u u 2  + V2 {ulU }] (38)

4.1 Bilinear Response to Step Inputs

4.1.1 Elementary 1-M Section

Consider that xI(t) = u(t - a) and x2 (t) = u(t - 8) with 8 > a. Then

the associated bilinear response of the elementary 1-M section (see Fig. 3)

is given by

Y 2 (sls 2 ) = H2 (sls 2) X1 (s1 ) X2 (s 2)

1 e e
(sl+a) (s2+b) (s+s 2+c) s1 s 2

-as 1 -8s2

( 1 1 - - e e

ab S 1 s 1 +a S2 s2+b Sl + s2 + c

so that, by application of George's theorem [8], the bilinear response becomes

e_ 1 i -a(-a) 1 1
V2 {X(S) ,X 2 (s) eab - s(s+c) (s+b)(s+c) (s+a)(s+c) (s+a+b)(s+c)) ]

e 1 1 1 1

ab -cs (c-a) s+a (c-b) s+b

(c-a-b) s+a+b

1 + 1 e-a(6-a)

-c-b c-a c--b s+c

e 1 I -a(8--a) 1 1 +e -a(i-)
ab s - (c-a) s+a (c-b)(s+b) (c-a-b) s+a+b

b bea( 8 - ) 1

c(c-b) (c-a)(c-a-b) s+c(
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Therefore the bilinear response in time domain is

v{ X1 ,xN }-AId -d Le- at'_ .d ebt' +d Le- (a+b)t' +(d4 -d5L)e- ct' ]uWt) (40a)

where L = e- a ), t' =t -Sand

d0= 1/c (40b)

d1= 1/Cc-a) (40c)

d = 1/Cc-b) (40d)

d3= 1/Cc-a-b) C40e)

d 4= b/c~c-b) (40f)

d 5= b/Cc-a)Cc-a-b) (40g)

Similarly, for the case a > , we obtain

v~x ~ = 1I~ -d e- at' -d Me-bt? + M-Ca+b)t' (dM e- ct IW(4h
2 ab d0 1 2 +d Me +C 6 M 7)e ]~'

where M = e tt  -a n

d6= a/c~c-a) (40i)

d7= a/Cc-b)Cc-a-b) (40j)

Note that d 4- d 5= d 6- d 7

4.1.2 General 1-M Section

For the general 1-M section of Fig. 19, the bilinear response to the unit

steps x 1Ct) = U~t-a) and x2 C(t) = u~t-a) is obtained immediately from formula

(17) and (40a). That is,

vfxI 2 } =

n 1 * j j -aiti ijk - b ti

___k ~ i ~ j

diik Lijk -(Ca +b j)t' ( ijk_ d ijk L iik)eCk tvI UWt) C41)
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where the constants are defined as in (40) with a, b1 and substituted

in place of a, b, and c. For example,

diJk I
1 C k - ai

and

ijk -ai (-)

4.1.3 Symmetric I-M Section

Since the bilinear response can be measured only for the symmetric Kernel

it is useful to give the counterparts of (40a) and (41) for this case. For

the elementary I-M section, setting b - a we have

V{XlX2}. - [ d- (dlL+d2 )e-at' +d Le- 2at +(d4-d5L)e-Ct ]u(t') (42)

Similarly, for the general 1-M section, setting b1 = a1 , we have

V{xlx 2 } =

n _ lk .lk - ' e-ajt'
nijk dik Lijke i _tijk e

i,j,k=l aia1 j 1 2

(ai+a)t' -C t
+d i e + (dijk _ dijk L]ik k u(t')3 4 5

4.2 Bilinear Response to Square Pulses (43)

4.2.1 Elementary 1-M Section
We are interested in finding the bilinear response of the 1-M section

to the input pair pl(t) = u(t) - u(t-T 1 ), P 2 (t) = u(t-Tl) - u(t-T). The

associated bilinear response (in s-domain) is

S(2)(sits2)= H2 (sts 2 ) X(s 1 )X(s 2 )

-T s -Tls -Ts
1 (l-e 1 (e 12e

(sl+a) (s2+b) (s 1+s 2 +C) s I  s 2
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pl (t) p 2 (t)

Ti *

2

Fig. 20 Square pulse - Input pair

From this we can obtain the bilinear response by application of George's

theorem. Alternatively, the desired bilinear response is computed using the

bilinearity property:

V (p1,p2  V f2 u ,u1  V {Uu 1  V fu ,u} + V {Uu 2

where uO = u(t), u1  u(t-T I) and u 2 =u(t-T).

By use of formula (40), we obtain

V {p 1 p}

1 d L e -'-d e -b+ d L e (a+bt +(d -d L )e -c'IUWt)
ab Ld0d 1 -at -2 b3t -ct'5

-[0-d1e-at' -d 2e-bt' d3e- (a-+b)t' +( d5)- ct' UW

- [d 0 - d L e-atil- d 2 ebt1 + d 3L e-(a+b) t"+ (d 4 - d 5 L )ect]1 u~t")

-at"t - bt" ~ d L (a+b)t" (A..AT I u~t" 1 (44a)
+ [d0- d 1L 2 e d d2 e +d3L2 e ( '4-5 L2' t )j

w h r i = e - T 1( 
4 4 b )

L 2 aT 2  e -a(T-T 1 ) (44c)

L = e -aT (44d)

t'= t - T (44e)

t " = t -T (44 f)
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Let us also define, for convenience,
.-bT 2

M2  - e (44g)

- cT2

N2  e (4 4h)

Then simplification of (44a) yields

V2{PPP2} =

0 for 0 < t < T

(-L [de-at' -d e(aIb)t' + d e ct u(t') for T < t < T

ab d1e3 1 -

l1 e-(a+b)t"+ -ct"b [d 3 L2 (L-M 2 ) e +d 5 (N2 -L 2 )e I for T < tab 32 2 2 2(441)

4.2.2 General I-M Section

For the general I-M section of Fig. 19, the bilinear response to the

square pulses pl(t) and P2(t) is obtained immediately from formulas (17)

and (44i). That is,

V2{plp 2} =

0 for 0 < t <T

n (1-L iik) ik-a t' j ai+ j - c 0t
E A B C L [dik e -d ed(ai+bd)t+ijk eck ] u(t')

i,jk=l i j k aib j  1 3 f5

for T 1 < t < T

BLC 1 ijk iJk ijk - (a5i+b2)t ijk jk -ckt " )A k B i C k aib Id3  L2 UI12 )e +d 5e(Ni2_ )e lt

for T < t (45)

where the constants are defined as in (40) and (44) with ai,bj and

* substituted in place of a,b,c. For example

dijk i/(c k1 Ick- a .1k
and

-aiT
L 

j k - e
1
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4.2.3 Symmetric 1-M Case

Since the bilinear response can be measured only for the symmetric Kernel,

it is useful to give the counterparts of (44i) and (45) for this case. For

the elementary I-M section, setting b = a we have

V2{p I p2 } =

0 for 0 < t < TI

1-L1  -at' -2at' ct'
2 d1 e - d3 e + d5 ec I ut)

a
for T 1 < t < T

(46)

-- d 3 L2 (l-L 2 )e-at + (N 2-L 2 )d-ct '] u(t")

a
for T < t

Similarly for the general 1-M section, setting b. = aj, we have

V2{Plp 2 } -

0 for 0 < t < T

n 1-L ij k  ik-ait'_dJk-(ai+a Wt - c t'

AB.C -d e +dijk ek I ut)uij k aiaj 1 3 t5e ]ut

i,j,k=l i for T 1 < t < T

n (1-L i j k )  .ik j,.ik (ai+a Wt",.k Li ck tt" Iu(t")

iLk-1 AiBiCk aiaj 3 2 M2 )e2

for T < t (47)
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Example 9

Consider an elementary I-M section with

H (s) = Hb(s) = 1 10
a s+l s+5

H (s) = 4/(s+12)C

and pl(t) = u(t) - u(t-l), P2 (t) = u(t-1) - u(t-2)

Then using (4) we have

V{PP 2} =

C) for 0< t < T

A 1 B I C (1-LI1 111 -(a+bl)t' l 111
alb l d e -d e +d e

a b [i1 3 51AB2 C1 (1-L21) -ad21 e' - (a2+b 2 )t' 
12 1  -Cl]t"

+ 2 d121 e + d

2 LA2B1 C1 (1-L1 21 211 -a2t' -d
2 1  -(a2  + 21W)+ a2), 21ld e +d e1

A2B2Cl(1-L
21 ) d2 21 ea2t' 221 (a2+b2)t 221 -cl u(t')

+ alb e -d3  e +d 5  e

fur T1 < t < T

A IB I d
C I (I- L I 1 [d L e- (aI t+ (N2I WO

2  -
t]

d ~~12 1 . ,,,
-a b ) t 3- c22

A1B2C1( -L1  [ 121 121.. 121) 1 2 ( 121 121 - i l
alb L 3 L 2 (lIM 2 )e +(N 2 -L2  )e ]

+ 2211- ) [ 211L 211 (M 211) 2 1  +(N211 2 1 1 - ) ]
a2b 1 3-2 2  e2 -2e4
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A2 B2 C1-L 2 1  221221 221 -(2-b 2 ) 221 -22 )ct
a2 b2  [d 3 L2  (1-M2 )e -+(N 22 1 221 ] u(t")

for T < t

where

a1  b 1 = 1 c = 12 c2  =0

A, B = 1 C1  4 C = 0

T - T = 1 T= 2

Thus

V{PlP 2} =

0 for 0 < t < 1

-) [I e-t' 1 -2t' -12t4(1-e e -moe + 1 -

+ -40(1-e 1 ) IF -1 e -6t -lt

6f66 1 < 6 66

-40(1-e - ) [1 -5t' 1 -6t' 1 -12ti
+ (5) 7e e -- e + -e

(5)42

400(1-e-) 1 -5t' 1 -lot, e -12 Ut')+ (25) e e +u 
")

for 1 < t < 2

+ -40(1-e1 ) [1 -11 -5 -6t" 12 -
(5) (1e) +( -e eli

-40(1-e- ) 1 -5 (--1 e- 6tII (-12_ e-5 e-12t'+ (5) [6e(1e) +( -e e J
+ 400(1-e 5 ) -1 e-5 (1-e-5 )e lot"+(e 12 - -5)e-12t 1  u(t",)(25) 2~

for 2 < t
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0 for 0 < t < I

0.229862e-(t-) - 0.252848e
- 2(t- 1) + 0.022986e

- 12(t - 1)

-0.459724e- (t- 1) + 0.842827e- 6(t
-l) - 0.383103e- 12(t -l)

-1.135157e- 5(t-1) + 1.324349e- 6 (t- l) - 0.189193e- 12(t -l)

2.270313e- 5(t-l) - 7.946096e - 1O(t - 1) + 5.6758 e 12(t-1) u(t-1)

for 1 < t < 2

0.058798e2(t
- 2) - 0.930161e

- 12(t - 2)

-0.307969e
- 6(t- 2) + 1.860322e

- 12(t - 2)

0.005641e
- 6(t- 2) + 0.053492e

- 12(t - 2)

+0.053179e-10(t-2) - 0.106983e - 12(t - 2) u(t-2)

for 2 < t

0 for 0 < t < 1

(0.229862e(t
-1) + 1.135156e

- 5(t-l) _ 0.252848e
- 2(t-l)

+ 2.167176e- 6(t- l ) - 7 .94 60 96 e-10(t-1)+ 5.1265 e 12(t-1) u(t-1)

for 1 < t < 2

0.058798e2(t2) - 0.31361e6(t2)

+ O.053179e- 1O(t-2) + 0.87667e - 12(t - 2) ) u(t-2)

for 2 < t
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4.3 Volterra Respouse to Step Input

4.3.1 Elementary l-M Section

The Volterra response to a unit step u~t) is obtained by setting

a= =0 and L =1 in (40a):

Y (t) .1[d -d e- at- d e-bt+d e- (a+b)t +(d d )ect lu~t) (48)
2 ab o 1 2 3 4

where do, ... d 5are the same as in (40).

4.3.2 General 1-M Section

For the general l-M section of Fig. 19 the Volterra response to a unit

step u~t) is obtained by setting a =0 and L ijk = 1 in (41):

y2(t) =

n 1 k ik-a it ik -
E[dii' dij e d edj Ji

i,j,k=l ai b 0 1

+ jke a bi t+(d-k d ik) e -ck tIu(t) (49)
3 4 5

4.3.3 Symmetric 1-M Section

For the symmetric elementary 1-M section we have from (48)

y2 (t)= 1-2 d 0-(d 1+d 2)e-a + d 3e- a + (d 4-d 5)e- ] )u(t) (C
a

Similarly, for the multiple pole case we have from (49)

y2 (t)

n 1 4,-a 4 t -a t
1 rd' j- d ijk e 1  

- d ijk e-

i,j,k=l aia o

ik-(ai+a,)t ik j -c kt
+ di e + (d -k di )e k u~t) (51)

3 4 5

4.4 Volterra Response to Square Pulse

4.4.1 Elementary l-M Section

The Volterra response to a square pulse p(t)=

u~t) - '(t-T) A u -u 1 is
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Y2 (t) -V 2 {u 0U - V {U ,u I - V2 {ulu 0 + V2 {ulu I
By use of (40a) and (40h), and some simplification, we have

Y2 (t) =

1 d-at e-bt+ d - (a+b)t+ e-Ct'I
a- [d0- 1 d2 3 e (d 4 -d 5 ) u(t')

0 < t < T

1[d 3 (L-1)(M-1) e (b)t +((d4 -d5 )N+d L+d7 M-d5 -d6 )e- Ct u(t)

T < t (52)

- aT -bT -cT
where t' - t-T, L - e , M = e and N = e All other symbols are the

same as in (40).

4.4.2 General 1-M Section

For the general 1-M section of Fig. 19, the Volterra response to a

unit pulse p(t) - u(t) - u(t-T) is obtained immediately from formulas (17)

and (52). That is

Y2 (t) =

n Ai BC k [jk ijk ijk -b t

E ab j - di d 2
i,j,k-l i j

+ d ijk -(ai+bj)t (dijk dijk e-Ckt

3 5ut)

for 0 < t < T

n A BjC ij j_-(a i+b j)t?
S a k [d3k(Lik-l) (Miik-l)e +

i,j,k=l aibj 3

-c t'
((dJk_ diik)NiJk+ d5 Lijk+ d7 iJk - 5 diJk- diik)e k I u(t)

4 5 57 5 6

for T < t (53)

4.4.3 Symmetric 1-M Section

The counterparts of (52) and (53) for the symmetric case can be written

immediately, but are not given for brevity.
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Example 10
1 10

a(s) = b~ ' s+l s+5

4
H (s) 41

c s+12

Then using eq. 53 we have

V{plp 2} =

4[-t 1 -t+ 1 -2t+( 1 )e -12t
12 fe - + 1e +132 110)eI

40 1 1 -t 1 -5t 1-6t 5 5 -12t-5 Y2 u y e  - -e + r + (T4- --) e

40 1 1 -t 1 -t 1 -6t 1 1 -12t5 [  12 7 - i-'i e + T e + 13-2_ 42 -)e ]

400 1 1-5t I-5t 1-lOt 5 5 -12t U
5 84 -- e ] ut)

for 0 < t < 1

1-i 1_1)2 e-2t'+( i e- 124 1 -1+ 1- 1
40-(e -1 y- 11 T1 110 -10

1 -12t'

40 1(I- M 5 e-6t' 5 -.12+ 5 -1 -5

5 6 84 66' 66 42

5 1 -12
66 132 e

40 1 -I -5 -6t' 1 - -12 1 -5- -[-e - )(e-5-1)e- t + ( - -)e + -42

5 -1 1 5 -12t']
+ -e - _4 ) e

4001, -5 ,2 -lOt' 5 5, -12, 5 -5
+ -40[L(e -1) e +((- - _j-)e +

525-5 5 5 -412 14 Y

+ -e 4 4e- u(t-)

for 1 < t
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(0.3333 + .23- .0-e t 2.285e-5

-2.6667e-6t + 80e-lt- 4 .50 4e- 
2t1 u(t)

for 0 < t <1

[0.1598e2(t-1) - 1.6743e- 6(t-1) + 7.8926e-10(t-1)

-5.745e 12t-1) u(t-1)

for 1 < t
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V. IDENTIFICATION OF H2 (sis 2 ) USING PULSE INPUTS

In this section we shall deal with the central problem of the report,

i.e., identification of H2 (sis 2 ). It will be shown that this can be accom-

plished by use of either the bilinear response to a pulse pair ) l(t) =

u(t) - u(t-T 1 ) and P2 (t) - u(t-Tl) - u(t-Ti-T 2), or the Volterra response to

a square pulse p(t) = u(t) - u(t-T). It is assumed that the transfer function

H 2 (sis 2) is symmetric or, equivalently, that H a (s) = Hb(s) in the block dia-

gram of (19). This assumption is entirely harmless because one can only identify

the symme2tric equivalent ' a Volterra system from input-output measurements [ 7 ].

The problem is considered in two parts. First the estimation of poles

of Ha = 1

b and Hc is considered. Next, the residues are estimated.

5.1 Identification of Poles

5.1.1 Poles from Bilinear Response

For a symmetric l-M section the bilinear response to the square-pulse

pair p1 (t) = u(t) - u(t-T 1 ) and P2 (t) = u(t) - u(t-T) was shown to be given

by (47). Over the time interval T1 < t < T this response can be visualized as the

step response of an equivalent linear system shown in Fig. 21, where ai Aai+a j and

the residues Pi' Q and R are defined according to the secbnd part oT (47).

Clearly, the pencil-of-functions method[lO],[12]can be used to find

ai i= .... n

a.. j 1, ...

Ck k = .... m

Note that in general the total number of poles is

N = n + n(n+l) + m (54)
2

If the I-M section is completely symmetric, i.e., if Ha = Hc ,

then the total number of poles is again given by (54); however the poles

a. occur with a multiplicity of 2, i.e.,1

ck = ak

3rhe reason for the interest in the bilinear response is the extra control on
the energies of the various modes provided by the widths of the pulses p1 and

P24
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ioI
(Delayed
unit step)

1.a .-
T_ T y= ) = 2  p  , 2

i=l j=l s I../

m R k

k=l s i--'

T for the response over T, < t < T
T = T for the response over T < t

Fig. 21 Equivalent linear system for bilinear response

of H2 (sls 2 )

We remark that the type of H2 (sls 2) considered by Ewen were completely
symmetric 1-M type. The simulation examples given below all pertain to com-

pletely symmetric I-M sections.

Example 11

Consider a I-M section with

Ha s) Hb( s) - -Hc() 50.5
s +s+25.25

The bilinear response to square pulses plP 2 with TI = 1 s. and T2 = 1 s.

(so that T - 2 s.) was generated over the interval T1 < t < T.

Using a sampling interval A = 0.02 s., the response was identified

using the computer program IGRAM. The following s-domain poles were obtained
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s = -0.553 - j5.023

s2 = -0.553 + j5.023

s3 = -1.135 + j4.9792

s = -0.998 - J10.025

s5 = -0.998 + ji0.025

s 6 = -1.1396 - j9.9968

s 7 = -1.0021

The normalized mean square error was V - -0.0012. Note that the following

program parameters were used IREM = 0, IDLY = 0.

By observation it is deduced that

a1 = 0.553 + j5.023

a2 = 0.553 - j5. 0 23

Over the time interval T < t the bilinear response is given by the

third part of (47), and can be visualized as the unit impulse response of

a linear system as shown in Fig. 22.

Again the pencil-of-functions method can be applied to determine

aij i = 1. ..... , n j = 1. ..... , i

ck k ...... m

Note that the total number of poles is

N n(n+l) + m (55)

2
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6 t T li V~ " Y2 (t-T )

s + ai+

k=l s +Ck

Fig. 22. Equivalent linear system for quadratic response of H2 (sls 2 ).

Note that a.. = a. + a.. Valid for T < t
IJ I j

5.1.2 Poles from Volterra Response

For a 1-M section the Volterra response to the square pulse p(t) =

u(t) - u(t-T) was shown to be given by the first part of (53). For the

symmetric case this response can be shown to equal the step response of

an equivalent linear system. This linear system has the same form as in

Fig. 21 with T = 0. Recall that aij = ai + a and the residues are defined

suitably.

Again, the pencil-of-functions method can be applied to determine

ai i =  .... ,n

aij j = i, .. ,

ck k 1 , m

In general, the total number of poles is

N = n + n(n+l) + m (56)2 +m

If the quadratic is completely symmetric, i.e., if H = H , then thea c'

total number of poles is again given by (56); however, the poles ai occur

with a multiplicity of 2.
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Over the time interval T < t the quadratic response is given by the

second part of (53), and can be visualized as the unit impulse response of

a linear system as shown in Fig. 22.

Again the pencil-of-functions method can be applied to determine

aij i =I ..... ,m j = 1,...

ck k I .... ,m

Note that the total number of poles is

N = n(n+l) + m (57)
2

5.1.3 Remarks

1. The test engineer has a choice here between the use of the two segments

of Yb(t) (or Y 2 (t)). At this time it appears that the use of last segment is

preferrable, since the dimensionality of identification is lower in this case

(as evidenced from a comparison of (54) with (55)), although quite extensive

experimentation is necessary to make a definitive statement.

2. Since the identified values aij and ck will not coincide with the

true values, it is necessary to isolate the poles by visual inspection or by

a suitable computer routine. For example, if these numbers for the case

(n,m) = (2,1) are

2.1, 4.15, 9.8, 5.95

then

al1  = 2.1

a12 = 4.15

a22 = 5.95

Ac = 9.8
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and we may take

a, = 1.05

a 2  = 3.1

= 9.8

5.2 Identification of Residues

After the poles have been determined, we can write

n i m
Y2 (t) = E E E AAjC k f ijk(t) (58a)

i=l j=l k=l

where f ijk(t) are defined in accordance with (47) or (53) (these are known

functions of the poles and the pulse width T). Further, by defining

e. = AiAjCk + j + k - 2 (58b)

g(p) - fijk(1A) 1 = 0,... ,M-1 (58c)
4

we obtain the following set of simultaneous equations

Y G E (59)

where

Y= [Y2 (0) Y2
(A ) ...... y2((M-I))]

G - I.')I M x I matrix

E= [eI ... e1 ]

Note that M denotes the number of time samples used in (58) and (59),

and I denotes the number of unknown residue-products. If M is chosen equal

If some of the poles are complex (occurring, in conjugate pairs), the
$ associated residues are also complex. In such cases, it is possible

to equate real (and imaginary) parts on both sides of the equation (59) to
obtain real coefficient equations
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to I then, we obtain the solution

E = G-1 Y (60)

More generally if M > I, then we obtain the least-squares solution [15]

E = (G'G) - l GTy (61)

Finally, the equations (58b) can be solved straightforwardly to yield the

residues Ai and C Because of the homogeneity of the relations any one of

ii

the real residues (or the magnitude of a complex residue) can be taken as 1.
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VI. EXAMPLES

Two computer-generated examples will be presented. The first is a

simple case with n=m=l and is intended to clearly present the details of

the procedure. The second is a more complicated case, representing a some-

what realistic channel. It has a linear transfer function characterized

by a 6th order butterworth filter, and a quadratic transfer function with

(m,n)=(3,i).

Example 12

Consider that the response Y2(t) of a quadratic subsystem, with Ha(s)=

i/(s+l) and Hb(s)=I/(s+0.5), to a square pulse of one second duration has

been measured. With a sampling interval A= 0.02, q = 0.8, and input a

unit sample pulse (digital impulse), the symmetric Gram matrix of the in-

formation signals turns out to be (only lower triangular entries are shown)

o. 88303D+01

0.41058D+02 0.19507D+03

0.18843D+03 0.90828D+03 0.42871D+04

-0.16677D+01 -0.46324D+01 -0.12867D+02 0.27778D+01

-0.91383D+01 -0.33616D+02 -0.11623D+03 0.77160D+01 0.35151D+02

The normalized cofactor square-roots (YIDi/vD 1 ) are

1.0000 0.35933 0.032129 0.22357 0.026502
5

By use of (6) and (7b) the negatives of the poles are computed to be

5

5 The reason to associate 1.9997 with al is that when segment 1 is analyzed, a

pole at 0.9996 also shows up.
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a = 1.9997

cI  0.5002

so that

a1  = 0.9998

c = 0.5002

Note that the waveform-fit error in modeling the poles was almost negligible

(normalized mean-square error = 10- 7 ) pointing to the success of pulse testing

approach.

Now, using these poles we find

-1.9997t' 050t

Y2 (t') = AIAIC (-0.2664375 e +0.4 119 19 5 e-05002t')

Using a single point, y 2 (t =0) = 0.292924, we obtain AAC 1 = 2.013, so that
6

A =1

C = 2.013

Example 13

Linear TF H 1(s) Sixth order butterworth with cutoff f 10 Mz

6.1528908(10 46)
r1I(s) 6 8516464

[s + 2.4276(10 8)s5 + 2.9467(016 )s4 + 2.2676(1024 )s3 +

1.1633(10 32)s
2 + 3.78358(10 39)s + 6.1528908(10 46)]

__ 6.1528908(10 10)

S[X6 + 242.76X 5 + 29467X 4 i267581X 3 + 1.6133(10 8)X2

+ 3.78358(109 ) + 6.1528908(10 10)]

6A better value AI A C = 2.0007 is obtained using 50 points and formula (21).
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Where X = (10-6)s (units of Mrad./s). L150.5(1013

Quadratic TF Ha (s)=Hc(s)=  2 7 14s + (107)s + 25.25 (1014)

505

X2 + 1OX + 2525

The above 2-variable system was excited by a square pulse p(t) of

duration T - 1 sec and the response y +(t) recorded. The system was next excited

by the opposite polarity pulse -p(t) and the corresponding response y-(t)

also recorded. From these responses we obtained the linear response yl(t)

and the quadratic response y2 (t) by use of (11).

The results of identification are given below:

Estimated Linear Transfer Function -

15.2 X + 6.1523(.0 10)

H())3 
4

[) 6 + 242.76X5 + 29467X4 + 2267593A3 + 1.6133(1082 + 3.784(109)X

10
+ 6.15237(101)

Estimated Quadratic Transfer Function

0.003 X + 505.07

a = c) X2 +9.9998X + 2524.8

It is easy to show that yl(t) = [y+(t) - y-(t)], and y2 (t)= [y (t)+y (t)].
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APPENDIX A

GEORGE'S THEOREM

This theorem helps evaluation of the quadratic volterra response (or

the bilinear response) by inspection from the associated response.

Theorem if

Y()(is2 (s I+a)(s 2 +b) C(s 1+ s (Bl)

then

Y (S) C(CS) (B2)
2 = + a + b

Proof: It is readily shown that

Y (S C(S) ds(B3)
Y2( 2Trj (s1+a)(s-s 1+b)ds

(see Schetzen [ 7]). Then the desired result follows immediately by use of

the residue theorem.

Corollary Let

-0s1 s2

Y 2 (sps2 = (s +a)(s +b) C()B4

if > ax, then

Y (S) = e-aC(6-() e- sC(S) 0B5)
2 (s + a + b)

If cc > then

Y (S) =e-b(a-') e-a C(S) (BO)
2 (s +a +b)
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